Обезжелезивание и деманганация воды
В. В. Банников, канд. техн. наук
Директор предприятия «Экосервис Технохим»
(www.etch.ru)
Содержание
1. Обезжелезивание воды
1.1. Химизм процессов в воде с участием железа
1.2. Методы обезжелезивания воды
Упрощенная аэрация
Аэрация на специальных устройствах
Коагуляция и осветление, известкование
Введение реагентов-окислителей
1.3. Скорые напорные фильтры обезжелезивания
1.4. Каталитические наполнители
2. Деманганация воды
Глубокая аэрация с последующим фильтрованием
Деманганация перманганатом калия
Каталитическое окисление марганца
Фильтрование через модифицированную загрузку
Введение реагентов-окислителей
Литература
1. Обезжелезивание воды
Вода с высоким содержанием железа обладает отталкивающим вкусом, а использование такой воды в производственном процессе приводит к появлению ржавых пятен и разводов на готовой продукции. При производстве бумаги, в текстильной промышленности, в прачечных использование воды, содержащей железо и марганец, недопустимо. Ионы железа и марганца загрязняют ионообменные смолы, поэтому при проведении большинства ионообменных процессов первой стадией обработки воды является их удаление.
Очистка воды от соединений железа является в ряде случаев довольно сложной задачей, которая может быть решена только комплексно. Это обстоятельство в первую очередь связано с многообразием форм существования железа в природных водах. Чтобы определить наиболее действенный и экономичный для конкретной воды метод обезжелезивания, нужно произвести пробное удаление железа.
В соответствии с требованиями СНиП [1] метод обезжелезивания воды, расчетные параметры и дозы реагентов следует принимать на основе результатов технологических изысканий, выполненных непосредственно у источника водоснабжения.
1.1. Химизм процессов в воде с участием железа
В воде поверхностных источников железо находится обычно в форме органо-минеральных коллоидных комплексов, в частности в виде гуминовокислого железа, и тонкодисперсной взвеси гидроксида железа. В речной воде, загрязненной кислотными стоками, встречается сульфат двухвалентного железа FeSO4. Из-за наличия в речной воде растворенного кислорода двухвалентное железо Fe2+ окисляется в трехвалентное Fe3+. При появлении в воде сероводорода H2S образуется тонкодисперсная взвесь сульфида железа FeS [2].
Подземные источники воды в подавляющем большинстве характеризуются наличием растворенного бикарбоната двухвалентного железа Fe(HCO3)2, который вполне устойчив при отсутствии окислителей и при рН>7,5. При высокой карбонатной жесткости, рН>10 и содержании Fe2+>10 мг/л бикарбонат может гидролизоваться с образованием углекислоты:
Fe(HCO3)2 + 2 H2O = Fe(OH)2 + 2 H2CO3 (1)
Российские санитарные нормы ограничивают общее содержание железа в воде для хозяйственно-питьевых нужд до 0,3 мг/л. В некоторых странах допустимое содержание составляет 0,2 мг/л. Фактически концентрация железа в подземных грунтовых водах находится в пределах от 0,5 до 50 мг/л. В центральном российском регионе, включая Подмосковье, эта величина изменяется в диапазоне 0,3 - 10 мг/л, наиболее часто 3-5 мг/л, в зависимости от географического местоположения и глубины источника. Начиная с концентрации 1,0-1,5 мг/л вода имеет неприятный металлический привкус. При уровнях выше 0,3 мг/л железо оставляет пятна на белье и санитарно-технических изделиях. При концентрации железа ниже 0,3 мг/л запах обычно не ощущается, хотя может появляться мутность и цветность воды [3].
Анаэробная (не имеющая контакта с воздухом) прозрачная грунтовая вода может содержать соединения двухвалентного железа (Fe2+) до нескольких миллиграммов на литр без ее помутнения при прямой подаче из источника. Однако при контакте с воздухом, а точнее с кислородом воздуха, двухвалентное железо окисляется до трехвалентного коллоидного состояния, что придает воде характерный красно-коричневый оттенок:
4 Fe(HCO3)2 + O2 + 2 H2O = 4 Fe(OH)3↓ + 8 CO2 (2)
Гидроксид трехвалентного железа Fe(OH)3 коагулирует и переходит в оксид железа Fe2O3 . 3 H2O, выпадающий в виде бурых хлопьев.
Пользователь зачастую наблюдает следующую картину: в первый момент вода, полученная из скважины, кажется абсолютно чистой и прозрачной, но в течение нескольких минут она мутнеет (реакция 2) с появлением специфического оттенка. При отстаивании воды муть оседает, образуя бурый рыхлый осадок (оксид трехвалентного железа).
Железо способствует также развитию «железобактерий», которые получают энергию при окислении Fe2+ до Fe3+, в результате чего в трубопроводах и на оборудовании образуется скопление слизи. В процессе окисления на 1 мг Fe2+ затрачивается 0,143 мг кислорода (О2), увеличивается содержание свободной углекислоты на 1,6 мг/л, а щелочность снижается на 0,036 мг-экв/л [4].
Присутствие в воде солей меди, а также контакт воды с ранее выпавшим осадком Fe(OH)3 , каталитически ускоряет процесс окисления Fe2+ до Fe3+.
В зависимости от условий (значение рН, температура, наличие в воде окислителей или восстановителей, их концентрация) окисление может предшествовать гидролизу, идти параллельно с ним или окислению может подвергаться продукт гидролиза двухвалентного железа Fe(OH)2.